Kimi-Linear is a 3B active, <6T tokens experiment. Its architecture is nothing sci-fi (except it works) – NoPE MLA + fancy GatedDeltaNet. this very strongly suggests to me that a) Gemini long-context attention doesn't have any secret sauce b) it's all about TPUs. No "Titans".
Context Arena Update: Added kimi-linear-48b-a3b-instruct [11-08] and kimi-k2 (Thinking) [11-06] to the MRCR leaderboards. The Linear 48b results are fascinating! It actually outperforms the new Gemini 3.0 Pro Thinking on 4-needle and 8-needle tasks at higher context lengths (512k+). I've added it to 2needle, 4needle, and 8needle. kimi-k2 (Thinking) lands lower on the leaderboards (Rank #22 for 2-needle AUC @ 128k), with a hard context ceiling around 262k. I did not run it for 2needle and 4needle. All results at: The performance curve for the Linear model is distinct: while it underperforms Gemini 3 significantly at shorter contexts (<=256k) on the difficult 8-needle test, its degradation slope is much flatter. Gemini starts higher and drops fast; Kimi starts lower but holds steady, overtaking Gemini at the higher end. However, note that kimi-linear-48b has noticeable performance drops past 128k on the easier 2 & 4 needle tests. Additionally, due to lower token efficiency compared to Gemini/GPT, only ~60% of the 1M token tests successfully ran (hitting limits/OOM). So some caution with the results at the 1M level. kimi-linear-48b results: 2-Needle Performance (@ 128k / @ 1M): - AUC: 96.5% (vs Gem 3: 99.5%) / 81.7% (vs Gem 3: 85.5%) - Pointwise: 96.0% (vs Gem 3: 99.0%) / 77.0% (vs Gem 3: 72.2%) 4-Needle Performance (@ 128k / @ 1M): - AUC: 85.5% (vs 85.8%) / 62.7% (#1, beating Gem 3: 57.3%) - Pointwise: 83.7% (vs 80.8%) / 51.5% (#1, beating Gem 3: 34.3%) 8-Needle Performance (@ 128k / @ 1M): - AUC: 54.9% (vs 73.0%) / 43.8% (#1, beating Gem 3: 39.0%) - Pointwise: 49.0% (vs 54.2%) / 35.3% (#1, beating Gem 3: 24.5%) A very different architectural approach yielding impressive stability at scale. Because of its current price point, it is very competitive for long context (MRCR). Enjoy. @Kimi_Moonshot @GoogleDeepMind @googleaidevs @OpenAI @OpenAIDevs
5.32K
10
The content on this page is provided by third parties. Unless otherwise stated, OKX is not the author of the cited article(s) and does not claim any copyright in the materials. The content is provided for informational purposes only and does not represent the views of OKX. It is not intended to be an endorsement of any kind and should not be considered investment advice or a solicitation to buy or sell digital assets. To the extent generative AI is utilized to provide summaries or other information, such AI generated content may be inaccurate or inconsistent. Please read the linked article for more details and information. OKX is not responsible for content hosted on third party sites. Digital asset holdings, including stablecoins and NFTs, involve a high degree of risk and can fluctuate greatly. You should carefully consider whether trading or holding digital assets is suitable for you in light of your financial condition.